Test Configurations

So while the Intel SSD DC P4800X is technically launching today, 3D XPoint memory is still in short supply. Only the 375GB add-in card model has been shipped, and only as part of an early limited release program. The U.2 version of the 375GB model and the add-in card 750GB model are planned for a Q2 release, and the U.2 750GB model and the 1.5TB model are expected in the second half of 2017. Intel's biggest enterprise customers, such as the Super Seven, have had access to Optane devices throughout the development process, but broad retail availability is still a little ways off.

Citing the current limited supply, Intel has taken a different approach to review sampling for this product. Their general desire for secrecy regarding the low-level details of 3D XPoint has also likely been a factor. Instead of shipping us the Optane SSD DC P4800X to test on our own system, as is normally the case with our storage testing, this time around Intel has only provided us with remote access to a DC P4800X system housed in their data center. Their Non-Volatile Memory Solutions Group maintains a pool of servers to provide partners and customers with access to the latest storage technologies and their software partners have been using these systems for months to develop and optimize applications to take advantage of Optane SSDs.

Intel provisioned one of these servers for our exclusive use during the testing period, and equipped it with a 375GB Optane SSD DC P4800X and a 800GB SSD DC P3700 for comparison. The P3700 was the U.2 version of the drive and was connected through a PLX PEX 9733 PCIe switch. The Optane SSD under test was initially going to be a U.2 version connected to the same backplane, but Intel found that the PCIe switch was introducing some inconsistency in the access latency on the order of a microsecond or two, which is a problem when trying to benchmark a drive with ~8µs best case latency. Intel swapped out the U.2 Optane SSD for an add-in card version that uses PCIe lanes direct from the processor, but the P3700 was still potentially subject to whatever problems the PCIe switch may have caused. Clearly, there's some work to be done to ensure the ecosystem is ready to take full advantage of the performance promised by Optane SSDs, but debugging such issues is beyond the scope of this review.

Intel NSG Marketing Test Server
CPU 2x Intel Xeon E5 2699 v4
Motherboard Intel S2600WTR2
Chipset Intel C612
Memory 256GB total, Kingston DDR4-2133 CL11 16GB modules
OS Ubuntu Linux 16.10, kernel 4.8.0-22

The system was running a clean installation of Ubuntu 16.10, with no Intel or Optane-specific software or drivers installed, and the rest of the system configuration was as expected. We had full administrative access to tweak the software to our liking, but chose to leave it mostly in its default state.

Our benchmarking is a variety of synthetic workloads generated and measured using fio version 2.19. There are quite a few operating system and fio options that can be tuned, but we generally ignored them: for example the NVMe driver wasn't manually switched to polling mode, or the CPU affinity was not manually set, and nothing was tweaked about power management or CPU clock speed turbo. There is work underway to switch fio over to using nanosecond-precision time measurement, but it has not reached a usable state yet. Our tests only record latencies in microsecond increments, and mean latencies that report fractional microseconds are just weighted averages of eg. how many operations were closer to 8µs than 9µs.

All tests were run directly on the SSD with no intervening filesystem. Real-world applications will almost always be accessing the drive through a filesystem, but will also be benefiting from the operating system's cache in main RAM, which is bypassed with this testing methodology.

To provide an extra point of comparison, we also tested the Micron 9100 MAX 2.4TB on one of our systems, using a Xeon E3 1240 v5 processor. In order to not unfairly disadvantage the Micron 9100, most of the tests  were limited to use at most 4 threads. Our test system was running the same Linux kernel as the Intel NSG marketing test server and used a comparable configuration with the Micron 9100 connected directly to the CPU's PCIe lanes rather than through the PCH.

AnandTech Enterprise SSD Testbed
CPU Intel Xeon E3 1240 v5
Motherboard ASRock Fatal1ty E3V5 Performance Gaming/OC
Chipset Intel C232
Memory 4x 8GB G.SKILL Ripjaws DDR4-2400 CL15
OS Ubuntu Linux 16.10, kernel 4.8.0-22

Because this was not a hands-on test of the Optane SSD on our own equipment, we were unable to conduct any power consumption measurements. Due to the limited time available for testing, we were unable to make any systematic test of write endurance or the impact of extra overprovisioning on performance. We hope to have the opportunity to conduct a full hands-on review later in the year to address these topics.

Due to time, we were unable to cover Intel's new Memory Drive Technology software. This is an optional software add-on that can be purchased with the Optane SSD. The Memory Drive Technology software is a minimal virtualization system that allows software to pretend that their Optane SSD is RAM. The hypervisor will present to the guest OS a pool of memory equal to the amount of available DRAM plus up to 320GB of the Optane SSD's 375GB capacity. The hypervisor manages the placement of data to automatically cache hot data in DRAM, such that applications or the guest OS cannot explicitly address or allocate Optane storage. We may get a chance to look at this in the future, as it offers an interesting aspect of the new ways multi-tiered storage will be affecting the Enterprise market over the next few years.

3D XPoint Refresher Checking Intel's Numbers


View All Comments

  • ddriver - Sunday, April 23, 2017 - link

    It is not expensive because it is new, it is expensive because intel and micron wasted a crapload of money on RDing it and it turned out to be mediocre - significantly weaker than good old and almost forgotten SLC. So now they hype and lie about it and sell it significantly overpriced in hopes they will see some returns of the investment.

    Also, it seems like you are quite ignorant, ignorant enough to not know what "order of magnitude" means. You just heard someone smart using it and decided to imitate, following some brilliant logic that it will make you look smart. Well, it doesn't. It does exactly the opposite. Now either stop using it, or at the very least, look it up, understand and remember what it actually means, so the next time you use it, you don't end up embarrassing yourself.
  • factual - Sunday, April 23, 2017 - link

    "significantly weaker than good old and almost forgotten SLC"

    Seriously ?! You must be getting paid to spew this bs! no one can be this ignorant!! can you read numbers ?! what part of 8.9us latency don't you understand, this is at least 10x better than the latest and greatest NVMe SSDs (be it TLC, VNAND or whatever bs marketing terms they feed idiots like you nowadays).

    what part of 95K/108K QD1 IOPS don't you understand ?! This is 3-10x compared to this best SSDs on the market.

    So I repeat again, Xpoint is orders of magnitude better performing than the latest and greatest SSDs (from Samsung or whichever company) on the market. This is a fact.

    You don't even understand basic math, stop embarrassing yourself by posting these idiotic comments!
  • ddriver - Monday, April 24, 2017 - link

    LOL, your intellect is apparently equal to that of a parrot. Reply
  • factual - Monday, April 24, 2017 - link

    Well if this fruitless exchange is any evidence my intellect is far superior to yours. So If my intellect is equal to that of a parrot, yours must be equal to that of a maggot ... lol Reply
  • evilpaul666 - Saturday, April 22, 2017 - link

    So where are the 32gb client ones? Reply
  • tomatus89 - Saturday, April 22, 2017 - link

    Who is this ddriver troll? Hahaha you are hillarious. And the worse is that people keep feeding him instead of ignoring him. Reply
  • peevee - Saturday, May 27, 2017 - link

    From your testing, looks like the drive offers real advantages on low QD, i.e. for desktop/small office server use. For these uses a normal SSD is also enough though.
    Given that modern Xeons have up to 28 cores (running 56 threads each) and server motherboards have 2 or more CPU slots, a properly loaded server will offer QD > 64 all day long, and certainly not just 4 active threads - where the Micron 9100 offers even higher performance, and if the performance is good enough there, it certainly good enough on lower QDs where it is even better PER REQUEST.
    And who cares what 99.999% latency is, as long as it is milliseconds and not seconds - network and other latencies on the accesses to these servers will be higher anyway.

    An incredibly good first attempt, but it really does not push the envelope in the market it is priced for - high-performance storage-bottlenecked servers.

Log in

Don't have an account? Sign up now